logo
Να στείλετε μήνυμα
Shenzhen Olax Technology CO.,Ltd
Σχετικά με εμάς
Ο επαγγελματίας και αξιόπιστος συνεργάτης σας.
Η Shenzhen OLAX Technology Co., Ltd, η οποία βρίσκεται στο Σενζέν της Κίνας.Είναι ένας κορυφαίος εγχώριος προμηθευτής λύσεων και εξοπλισμού τεχνολογίας τερματικών ασύρματων επικοινωνιών.Τα βασικά προϊόντα μας είναι 4G C P E WIFI δρομολογητές, USB WIFI dongles, modems. Pocket WIFI hotspot.GSM και C D M Α σταθερά ασύρματα τηλέφωνα, τερματικά, Επιπλέον υποστηρίζουμε κλειδαριά καρτών,Ασφάλεια δικτύου και κάρτας SIM.Έχουμε μια βασική ομάδα με περισσότερα από δέκα χρόνια εμπειρίας στην έρευνα και ανά...
Μάθετε Περισσότερα

0

Έτος ίδρυσης:

0

Εκατομμύριο+
Εργαζόμενοι

0

Εκατομμύριο+
Οι Πελάτες εξυπηρετούνται

0

Εκατομμύριο+
Ετήσια πωλήσεις:
ΚΙΝΑ Shenzhen Olax Technology CO.,Ltd Υψηλή ποιότητα
Σφραγίδα εμπιστοσύνης, έλεγχος πιστοληπτικής ικανότητας, RoSH και αξιολόγηση της ικανότητας προμηθευτή. Η εταιρεία έχει αυστηρό σύστημα ελέγχου ποιότητας και επαγγελματικό εργαστήριο δοκιμών.
ΚΙΝΑ Shenzhen Olax Technology CO.,Ltd ΑΝΑΠΟΤΑΣΗ
Εσωτερική επαγγελματική ομάδα σχεδιασμού και εργαστήριο προηγμένων μηχανημάτων. Μπορούμε να συνεργαστούμε για την ανάπτυξη των προϊόντων που χρειάζεστε.
ΚΙΝΑ Shenzhen Olax Technology CO.,Ltd ΕΠΙΤΡΟΠΗ
Προηγμένες αυτόματες μηχανές, αυστηρά σύστημα ελέγχου διαδικασίας. Μπορούμε να κατασκευάσουμε όλα τα ηλεκτρικά τερματικά πέρα από τη ζήτηση σας.
ΚΙΝΑ Shenzhen Olax Technology CO.,Ltd 100% Υπηρεσία
Μεταφορές χύδην και μικρών συσκευασιών, FOB, CIF, DDU και DDP. Ας σας βοηθήσουμε να βρείτε την καλύτερη λύση για όλες τις ανησυχίες σας.

ποιότητας Φορητοί δρομολογητές Wifi & Ασύρματοι δρομολογητές WIFI κατασκευαστής

Βρείτε προϊόντα που ανταποκρίνονται καλύτερα στις ανάγκες σας.
Υποθέσεις & Ειδήσεις
Τα Τελευταία Ζεστά Σημεία
USIM στο σύστημα 5G (NR) (1)
1.UE και UICC Στο σύστημα κινητής επικοινωνίας που ορίζεται από την 3GPP (Πρόγραμμα Συνεργασίας 3ης Γενιάς), η τερματική συσκευή (ΕΕ) του χρήστη αποτελείται από:ME (κινητό εξοπλισμό) + UICC (Παγκόσμια κάρτα ολοκληρωμένου κυκλώματος); όπου η UICC είναι μια φυσική κάρτα που είναι αδιάλλακτη και ανθεκτική σε επιθέσεις λογισμικού και υλικού. 2. UICC και USIM UICC μπορεί να περιέχει πολλαπλές εφαρμογές, μία από τις οποίες είναι το USIM. Το USIM αποθηκεύει και επεξεργάζεται με ασφάλεια όλα τα ευαίσθητα δεδομένα που σχετίζονται με τον χρήστη και το οικιακό δίκτυο.Η USIM βρίσκεται υπό τον έλεγχο του φορέα εκμετάλλευσης του δικτύου στο σπίτιΟ φορέας εκμετάλλευσης επιλέγει τα δεδομένα που πρέπει να ρυθμιστούν στην USIM πριν από την έκδοση και διαχειρίζεται εξ αποστάσεως την USIM στην συσκευή του χρήστη μέσω του μηχανισμού OTA (over-the-air). 3Το.USIM στο 5G 3GPP ορίζει το USIM για το σύστημα 5G στο Rel-15 για πρόσβαση και χρήση σε δίκτυα 3GPP και μη 3GPP, επιτρέποντας σε εξωτερικά δίκτυα δεδομένων UE (εξοπλισμός χρήστη).Το USIM ορίζεται στο Rel-16 ως συγκεκριμένη εξακρίβωση ταυτότητας σε τμήμα δικτύου. 4.Η εξακρίβωση της ταυτότητας για πρώτη φορά είναι μια υποχρεωτική διαδικασία που επιτρέπει στον χρήστη να έχει πρόσβαση σε δίκτυα 3GPP ή μη. EAP-AKA' or 5G-AKA are the only authentication methods that allow primary authentication and the subscription credentials are always stored in the USIM when the terminal supports 3GPP access functionalityΓια την πρωταρχική εξακρίβωση της ταυτότητας με βάση το AKA,η αμοιβαία εξακρίβωση της ταυτότητας που πραγματοποιείται στο USIM και η παραγωγή του υλικού κλειδιού (κλειδί ακεραιότητας IK και κλειδί εμπιστευτικότητας CK) που αποστέλλεται από το USIM στο ME παραμένουν αμετάβλητες σε σύγκριση με το 3G, 4G και πληροί τις προδιαγραφές 3GPP TS 33.102 [3].Οι αλλαγές στο 5G Primary Authentication USIM περιλαμβάνουν την αποθήκευση νέου πλαισίου ασφαλείας και πρόσθετου υλικού κλειδιών στο USIM (ανάλογα με τη διαμόρφωση του USIM). 4.1 Υποστήριξη 5G Εάν το USIM υποστηρίζει την αποθήκευση παραμέτρων 5G, το ME θα αποθηκεύει το νέο πλαίσιο ασφάλειας 5G και τα νέα κλειδιά που ορίζονται για την ιεραρχία κλειδιών 5G (δηλαδή KAUSF, KSEAF και KAMF) στο USIM.Το USIM μπορεί να αποθηκεύει ένα πλαίσιο ασφάλειας 5G για δίκτυα πρόσβασης 3GPP και ένα πλαίσιο ασφάλειας 5G για δίκτυα πρόσβασης μη 3GPPΗ αποθήκευση του πλαισίου ασφαλείας και του βασικού υλικού στο USIM εξασφαλίζει ταχύτερη επανασύνδεση κατά την περιαγωγή (το UICC μετακινείται από ένα ME σε άλλο). 4.2 Υποστήριξη NPN Η ταυτοποίηση σε ιδιωτικά δίκτυα (που ονομάζονται ανεξάρτητα μη δημόσια δίκτυα) μπορεί να βασίζεται στο πλαίσιο EAP που υποστηρίζεται από το σύστημα 5G.Ο εξοπλισμός χρήστη και τα δίκτυα υπηρεσιών μπορούν να υποστηρίξουν το 5G AKA, EAP-AKA' ή οποιαδήποτε άλλη μέθοδος εξακρίβωσης της ταυτότητας EAP γενιάς κλειδιών, όπου: ·Όταν χρησιμοποιούνται μέθοδοι εξακρίβωσης της ταυτότητας με βάση το AKA, εφαρμόζεται η ρήτρα 6.1 του 3PPTS 33501 [1]. ·Όταν επιλέγεται μέθοδος εξακρίβωσης ταυτότητας EAP διαφορετική από την EAP-AKA', η επιλεγμένη μέθοδος καθορίζει τα διαπιστευτήρια που απαιτούνται στο UE και το δίκτυο.Ο τρόπος με τον οποίο αυτά τα διαπιστευτήρια για μεθόδους ΕΠΠ εκτός της EAPAKA' αποθηκεύονται και επεξεργάζονται εντός της ΕΕ είναι πέρα από το πεδίο εφαρμογήςΑλλά για να διασφαλίσουμε ένα υψηλό επίπεδο ασφάλειας για την πρόσβαση σε ιδιωτικά δίκτυα, private network operators may decide to require the presence and use of a UICC containing USIM applications in order to securely store and process subscription credentials for EAP methods such as EAP-AKA' or EAP-TLS . 5. Δευτερογενής εξακρίβωση της ταυτότητας Πρόκειται για προαιρετική εξακρίβωση της ταυτότητας που βασίζεται στην EAP και διεξάγεται μεταξύ του UE (εξοπλισμού χρήστη) και του DN (εξωτερικού δικτύου δεδομένων).Παρόλο που η επιλογή της μεθόδου και των διαπιστευτήτων πιστοποίησης ΕΠΠ είναι πέραν του πεδίου εφαρμογής της 3GPP, τα εξωτερικά δίκτυα δεδομένων μπορούν να αποφασίσουν να προστατεύσουν την πρόσβαση στο DN τους με την εκτέλεση ισχυρής εξακρίβωσης της ταυτότητας χάρη στη μέθοδο εξακρίβωσης της ταυτότητας EAP-AKA' ή EAP-TLS,Η παρουσία του USIM στο DN αποθηκεύει και επεξεργάζεται με ασφάλεια τα διαπιστευτήρια που χρησιμοποιούνται για πρόσβαση στο DN. Ειδική Πιστοποίηση Δικτύου Χρησιμοποιώντας ειδική Πιστοποίηση Δικτύου μεταξύ της συσκευής χρήστη και του AAA (Πιστοποίηση,Εξουσιοδότηση και Λογιστική) διακομιστής για την πρόσβαση στο κομμάτι του δικτύου είναι προαιρετικήΗ ειδική ταυτοποίηση διαχωρισμού δικτύου βασίζεται στο πλαίσιο EAP και το αναγνωριστικό χρήστη και τα διαπιστευτήριά του διαφέρουν από τα διαπιστευτήρια συνδρομής 3GPP.Ακολουθεί την υποχρεωτική πρωτοβάθμια πιστοποίησηΟι ενδιαφερόμενοι που αναπτύσσουν slices μπορούν να αποφασίσουν να εγκαταστήσουν το USIM στο UICC των συσκευών των χρηστών για να εξασφαλίσουν υψηλό επίπεδο ασφάλειας για την πρόσβαση στα slices τους και να αποτρέψουν την εμφάνιση μη εξουσιοδοτημένων χρηστών.
Καινοτομία στην τεχνολογία SIM: μια εις βάθος ματιά στην eSIM και την vSIM
01.eSIM   eSIM,γνωστή ωςΕνσωματωμένη κάρτα SIM, ήΕνσωματωμένη κάρτα SIM, είναι προγραμματιζόμενη τεχνολογία ηλεκτρονικής κάρτας SIM της οποίας το κύριο χαρακτηριστικό είναι ότι δεν απαιτείται φυσική θέση,αλλά μάλλον ένα ενσωματωμένο τσιπ που ενσωματώνεται απευθείας στην πλακέτα κυκλωμάτων της συσκευής ή μέσα σε άλλες συσκευές. Μέρος υλικού     Τσιπ ολοκληρωμένου κυκλώματος (IC):Στην καρδιά της eSIM βρίσκεται ένα μικρό τσιπ IC που είναι ενσωματωμένο στη μητρική πλακέτα της συσκευής, παρόμοιο με μια φυσική κάρτα SIM. Περιέχει το απαραίτητο υλικό (CPU, ROM, RAM,EEPROM και μονάδα σειριακής επικοινωνίας) για την αποθήκευση και επεξεργασία δεδομένων SIM.   Μέρος λογισμικού     Συστήματα λειτουργίας (OS):Το τσιπ eSIM τρέχει ένα ειδικό λειτουργικό σύστημα, που συχνά αναφέρεται ως eUICC (Embedded Universal Integrated Circuit Card), το οποίο διαχειρίζεται τις λειτουργίες της SIM, συμπεριλαμβανομένης της αποθήκευσης δεδομένων,ασφαλής επεξεργασία και επικοινωνία.     Διαδικασία παραγωγής eSIM   1 Κατασκευή τσιπ 2 Δοκιμές τσιπ 3 Ενσωμάτωση σε συσκευές 4 Εγκατάσταση ενσωματωμένου λογισμικού 5 Λειτουργικές δοκιμές και επαλήθευση   Εικονική κάρτα SIM (vSIM)είναι μια τεχνολογία κάρτας SIM χωρίς φυσικό παράγοντα μορφής που επιτρέπει στις συσκευές να πραγματοποιούν λειτουργίες επικοινωνίας μέσω λογισμικού, συμπεριλαμβανομένων των SoftSIM, CloudSIM και άλλων.   02.Εικονική κάρτα SIM (vSIM)   Εικονική κάρτα SIM (vSIM)είναι μια τεχνολογία κάρτας SIM χωρίς φυσικό παράγοντα μορφής που επιτρέπει στις συσκευές να πραγματοποιούν λειτουργίες επικοινωνίας μέσω λογισμικού, συμπεριλαμβανομένων των SoftSIM, CloudSIM και άλλων.   SoftSIMελέγχει τις πληροφορίες που γράφονται στο SoftSIM μέσω του παρόχου τερματικού,και ο χρήστης αγοράζει και χρησιμοποιεί υπηρεσίες επικοινωνίας απευθείας μέσω του λογισμικού χωρίς την παρέμβαση του χειριστή, η οποία διακόπτει την άμεση σύνδεση μεταξύ χρήστη και χειριστή.   CloudSIMείναι ένα είδος λειτουργίας κάρτας SIM που υλοποιείται με βάση την τεχνολογία cloud computing, όπου οι χρήστες χρησιμοποιούν υπηρεσίες δικτύου στις συσκευές τους μέσω υπηρεσιών cloud.   03.Διαδικασία ενεργοποίησης της υπηρεσίας SIM   CloudSIMενσωματώνει τους πόρους κίνησης κάθε φορέα εκμετάλλευσης στο σύννεφο, επιλέγει τους φορείς εκμετάλλευσης ανάλογα με την ποιότητα σήματος και δικτύου των διαφόρων περιοχών,και τους σπρώχνει στα τερματικά για να παρέχει στους χρήστες τις καλύτερες υπηρεσίες δικτύουΗ συμμετοχή πολλών φορέων παρέχει στους χρήστες ευκολότερη επιλογή ευνοϊκότερων πακέτων.       Θέλετε να μάθετε περισσότερα για τις κάρτες SIM και άλλα θέματα επικοινωνίας; Θα συνεχίσουμε να μοιραζόμαστε περισσότερα γι 'αυτό! Τα λέμε στο επόμενο τεύχος!
Key Takeaways from 5G Radio Working Group (RAN2) R17
  RAN2's 5G work focuses on consolidating and enhancing the concepts and functions introduced in R16, while adding new system features; improving vertical industry applications including positioning and dedicated networks; advancing short-range (direct) communication between terminal devices in the field of autonomous driving (V2X) for Internet of Things (IoT) support; improving support for multiple media (codecs, streaming media, broadcast) related to the entertainment industry; and improving support for mission-critical communications. Furthermore, it improves several network functions (such as network slicing, flow control, and edge computing). The specific key points regarding the radio interface architecture and protocols (such as MAC, RLC, PDCP, SDAP), radio resource control protocol specifications, and radio resource management processes under the responsibility of 3GPP RAN2 are as follows:   I. Key Features of RAN2 Rel-17: Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions). RedCap Protocol Support (Lightweight RRC Status, Energy Saving, Feature Set Reduction). QoE/slice control enhancements and mobility handling (slice improvements and ATSSS interaction). Location enhancement procedures (new measurement methods and reference signal usage). II. Rel-17 Implementation Impact and Details   2.1 Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions) RRC message and MAC/PHY multiplexing changes; new Sidelink relay (L2/L3) multicast and group management procedures. In application: Extended sidelink control channel processing and HARQ management for relay nodes, RC upgrade to support Sidelink configuration lists, group identifiers, and security context distribution. Resource allocation enhancements support scheduling and autonomous resource selection and add an RRC TLV field for authorization timing and reservation windows. 2.2 RedCap and RRC Reduced RRC complexity: RedCap devices may support fewer RRC states and optional functions (e.g., limited measurements). RAN2 specifies capability signaling and fewer RRC IEs; implementers must ensure that the gNodeB's RRC can handle capability-limited UEs without affecting normal UE processing. Energy-saving timers and RRC inactive: Tight integration with MAC and DRX to optimize power consumption; the scheduler supports longer DRX cycles and fewer grant allocations. 2.3 Location and Measurement Rel-17 introduces new measurement types and reporting formats to improve the application of PRS/CSI-RS in location. Implementation requires changes to UE measurement reports (RRC measurement objects and reports) and the LPP/NRPPa interface of the location server. ​

2025

12/05

5G System Architecture Supporting ATSSS
  I. ATSSS is an abbreviation for Access Traffic Steering, Switching, Splitting; this is a function introduced by 3GPP for 5G (NR) that allows mobile devices (UEs) to simultaneously use 3GPP and non-3GPP access, manage user data traffic, control new data flows, select (new) access networks, switch all ongoing data to different access networks to maintain data continuity, and split individual data flows, allocating them to multiple access networks to improve performance or achieve redundancy. Specifically:   Control:The network determines which access method (e.g., 5G and Wi-Fi) a new data flow should use based on operator-defined rules and real-time conditions. Switching:The network transfers an ongoing data session from one access network to another. For example, a video call can be switched from Wi-Fi to 5G without interruption. Splitting:The network can simultaneously allocate a single data flow to two or more access networks. This can be used to increase bandwidth (link aggregation) or ensure reliability (redundancy). II. Working Principle ATSSS can operate at the IP layer (using protocols such as MPTCP) or below the IP layer (using underlying routing functions). Control is handled by the 5G core network's PCF (Policy Control Function), based on operator-defined rules and performance measurement data from the User Equipment (UE) and the network itself.   III. ATSSS Modes The main ATSSS modes are as follows: Primary/Backup Mode:Traffic is sent through the active link. If the active link fails, it switches to the backup link. Load Balancing Mode:Traffic is distributed among available access networks, typically based on a percentage to balance the load. Minimum Latency Mode:Traffic is routed to the access network with the lowest latency (round-trip time). Priority Mode:Traffic is initially sent through a high-priority link. If that link becomes congested, traffic is split or diverted to a lower-priority link. IV. Architecture Expansion and Functionality The 5G system architecture has been expanded to support ATSSS functionality (see Figures 4.2.10-1, 4.2.10-2, and 4.2.10-3); the 5G terminal (UE) supports one or more flow control functions, namely MPTCP, MPQUIC, and ATSSS-LL. Each flow control function in the UE can perform flow control, handover, and splitting between 3GPP and non-3GPP access networks according to the ATSSS rules provided by the network. For Ethernet-type MA PDU sessions, the UE must have ATSSS-LL functionality, with the following specific requirements for the UPF: - The UPF can support MPTCP proxy functionality, which communicates with the MPTCP function in the UE using the MPTCP protocol (IETF RFC 8684 [81]). - UPF can support MPQUIC proxy functionality, which communicates with the MPQUIC function in the UE using the QUIC protocol (RFC9000 [166], RFC9001 [167], RFC9002 [168]) and its multipath extension (draft-ietf-quic-multipath [174]). - UPF can support ATSSS-LL functionality, which is similar to the ATSSS-LL functionality defined for the UE. IV. ATSSS Application Characteristics 4.1 Ethernet type MA PDU sessions require the ATSSS-LL functionality (conversion) in 5GC. In addition: - UPF supports Performance Measurement Function (PMF), which the UE can use to obtain access performance measurements on the 3GPP access user plane and/or non-3GPP access user plane. - AMF, SMF, and PCF extend new functionality, which is discussed further in Section 5.32. 4.2 ATSSS control may require interaction between the UE and the PCF (as specified in TS 23.503[45]).   4.3 The UPF shown in Figure 4.2.10-1 can be connected via the N9 reference point instead of the N3 reference point.   V. Roaming Scenarios 5.1 Figure 4.2.10-2 shows ATSSS support in a roaming scenario for the 5G system architecture; this scenario includes home-roaming traffic, and the UE is registered to the same VPLMN via 3GPP and non-3GPP access. In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are located in the H-UPF. 5.2 Figure 4.2.10-3 shows ATSSS support in a roaming scenario for the 5G system architecture, this scenario includes home-roaming traffic, and the UE is registered to the VPLMN via 3GPP access and to the HPLMN via non-3GPP access (i.e., the UE is registered to different PLMNs). In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are all located in H-UPF.

2025

12/04

What's different about 5G (NR) in Release 16 (2)?
  Besides defining SA (Standalone) as the standard 5G configuration, Release 16 5G enhances many features to support numerous improvements to the air interface, including unlicensed spectrum in the millimeter wave (mmW) band, and support for Industrial Internet of Things (IIoT) and Ultra-Reliable Low-Latency Communication (URLLC), making it more powerful. Specific additions are as follows:   I. Feature Enhancements As 5G network deployment progresses, the capacity requirements of the Radio Access Network (RAN) continue to grow, and the flexibility of network deployment is also increasing, including support for dedicated networks; RAN capacity and performance have become key to solving problems;   1.1 Capacity Enhancements include:   MIMO (Multiple-Input Multiple-Output) Improvements: Enhanced CSI II codebook to support MU-MIMO, multiple transmissions and receptions (multiple TRPs/panel transmissions), multi-beam operation in the millimeter wave band FR2, and low peak-to-average power ratio (PAPR) reference signals. Unlicensed Spectrum Applications: Similar to Licensed Assisted Access (LAA) and Enhanced LAA, 3GPP Release 16 supports unlicensed spectrum for NR access to improve the throughput and capacity of Wi-Fi in the 5-6 GHz band. 1.2 Performance Improvements:   RACS (Radio Access Capability Signaling) Optimization: Establishing RACS IDs and mapping them to device radio capabilities optimizes signaling for UE radio capabilities. Multiple UEs can share the same RACS ID, which is stored in the Next Generation Radio Access Network (NG-RAN) and Access and Mobility Management Function (AMF). Additionally, a new network function called UCMF (UE Capability Management Function) is introduced. TDD Applications: NR is primarily used in high-frequency time-division duplex bands: Due to electromagnetic wave reflection and refraction, the downlink of one cell can interfere with the uplink of another cell; this cross-link interference is inherent. NR Release 16 supports remote interference management to mitigate this cross-link interference. II. Flexible Network Deployment R16's IAB (Integrated Access and Backhaul) functionality can increase network capacity by rapidly deploying denser access points. Additionally: Non-Public Networks (NPNs): R16 supports two types of NPNs: Standalone NPN (SNPN) and Public Network Integrated NPN (PNI-NPN).  Flexible SMF and UPF Deployment: R16 introduces management flexibility for Session Management Functions (SMFs) and User Plane Functions (UPFs), allowing multiple SMFs to control a single UPF, and the UPF can assign IP addresses in place of the SMF. Enhanced Network Slicing Capabilities: R16 adds Network Slice-Specific Authentication and Authorization (NSSAA) to support individual authentication and authorization for services within a given network slice. Enhanced eSBA (Service-Based Architecture): R16 enhances service discovery and routing capabilities, including the introduction of a new Service Communication Broker (SCP) network function. R16 also enhances Network Automation Architecture (eNA). Release 15 supports data collection and network analytics public functionality. In Release 16, network analytics IDs can be used to assign specific analytics data, such as network usage per network slice, UE mobility information, and network performance, enabling the Network Data Analytics Function (NWDAF) to collect specific data associated with that analytics ID.

2025

12/03